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Abstract

We study heavy traffic asymptotics of many Additive Increase Multi-
plicative Decrease (AIMD) connections sharing a common router in the
presence of other uncontrolled traffic, called ”mice”. The system is scaled
by speed and average number of sources. With appropriate scalings of the
packet rate and buffer content, an approximating delayed diffusion model
is derived. By heavy traffic we mean that there is relatively little spare ca-
pacity in the operating regime. In contrast to previous scaled models, the
randomness due to the mice or number of connections is not averaged,
and plays its natural and dominant role. The asymptotic heavy traffic
model allows us to analyze buffer and loss management policies of early
marking or discarding as a function of the queue size and/or the total
input rate and to choose a nearly optimal function via use of an appro-
priate limiting optimal control problem, captures the essential features of
the physical problem, and can guide us to good operating policies. After
studying the asymptotics of a large number of persistent AIMD connec-
tions we also handle the asymptotics of finite AIMD connections whose
number varies as connections arrive and leave. The data illustrate some
of the advantages of the approach.

Keywords: AIMD models, FTP analysis, heavy traffic analysis, approximating
delay-diffusions, nearly optimal controls

1 Introduction

Background and motivation One of the most active research areas in net-
working in recent years has been the modeling and analysis of AIMD traffic; e.g.,
[1, 2, 3, 4, 6, 10, 15, 16, 17, 18, 20, 21]. When considering a single connection
and modeling all other connections through an idealized loss process, simple
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mathematical formulas for the connection’s throughput can be obtained; e.g.,
[1, 6, 18, 21]. However, it is important in practice to understand the interaction
of competing random numbers of connections and the associated system ran-
domness that determines both the throughput as well as the losses suffered by
the various connections. One approach is through a fixed point argument; see,
e.g., [4]. If the loss rates over the nodes (or links) traversed by the connections
are sufficiently small and can be assumed to be additive, an alternative frame-
work can be used where the throughputs of TCP are obtained as the solution
of a convex optimization problem and where the loss probabilities are obtained
as the Lagrange multipliers [16, 21].

Although the methodologies in these references can be useful due to their
simplicity, no dynamical systems description is provided; hence the actual “pro-
cesses” do not appear, and it is very difficult to add dynamical (say, queue and
packet rate dependent) controls to the formulation. The way that packet losses
affect individual sources and the consequent effects on the full system are not
modeled explicitly, and it is difficult to analyze the oscillations or instabilities
that might be caused by delays. They cannot provide a sample-path or tran-
sient analysis. Models including some of these features appear in [2, 5] under
simplified assumptions on the protocol’s behavior (e.g., an assumption in [2]
that loss probabilities do not depend on rates, or an assumption in [5] that all
connections simultaneously lose a packet when the buffer is full). In order to
analyze more complex systems that include buffer management, early marking
or discarding, and the impact of the delay in the feedback loop, an alternative
line of research has emerged based on fluid models using delay differential equa-
tions methodology; see e.g. [8, 17, 21]. In [20], a fluid model of the form of
a delayed ordinary differential equation is obtained as a limit of a sequence of
suitably scaled physical systems, as the number of connections and the speed of
the system grows, and where the randomness is due to the varying number of
non controlled connections. However, there is no randomness in the limit model.
More detail on the relations between [20] and our work appears in Section 7.

Our goal is to analyze heavy traffic approximating models for multiplexing
between AIMD and non controlled traffic, where the losses are a consequence of
the actual underlying physical processes, as well as to determine good controls
for buffer and loss management. The limit model should retain the main effects
of the randomness of the physical processes, which determines the essential
features of the buffer and loss processes. The limit model is not deterministic,
but it is much simpler to handle than the original discrete stochastic system,
and (as seen through numerical examples) it allows us to get good controls for
buffer and loss management.

The basic ideas. As with many models for TCP, we will use a “stochas-
tic fluid” model for describing the transmission process; i.e., rather than work
explicitly with the widow size; we work with the number of packets that are
allowed to be sent per unit time. We consider a model for AIMD traffic in the
operating region where the system is near capacity. The analysis will be “asymp-
totic,” as the system grows in speed. In particular, the bandwidth (speed of
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the router) as well as the mean number of users will be roughly proportional to
a parameter n, which is to go to infinity. The analysis will be of the so-called
heavy traffic (HT) type [13], which has been of considerable help in studying
many complex queueing systems that would be intractable otherwise. Several
formulations of the demand process are given. In all cases, there are a certain
number of controlled users of the order of n, each having a lot of data to trans-
mit. These share the channel with a large and randomly varying number of
users with smaller amounts of data. These are commonly referred to as “mice.”
They are in the system for too short a time to be controlled, but might take a
substantial (40% or more) of the total capacity. While each of the mice (resp.,
each of the controlled users) has identical statistical properties, this is only for
convenience in the numerical analysis: Any number of classes can be handled.

The packets created by the various users enter the system in some random
order, then are sent to a buffer via various links, from which they are transmit-
ted. If the buffer capacity is exceeded, then a packet is said to be “lost.” Until
noted otherwise, the round trip delay α is the same for all AIMD users. The
timing of the various rates are as seen at the buffer (not at the sources). They
depend on the feedback sent from the buffer α units of time ago, which reached
the source t1 units of time ago, was then acted on and affected the rates at the
input to the buffer t2 units of time later, where t1 + t2 = α.

We wish to identify a region of operation which is “near capacity” for large
n, and a scaling under which the stochastic effects are apparent. One approach
to asymptotic analysis is via a fluid model (e.g., [20]). These tend to average
or eliminate the effects of stochastic variations in the number of users, mice,
data rates, etc. But we are more concerned with demonstrating the actual
random processes of losses and buffer content in terms of the random processes
of arrivals, data levels, etc.

We are guided by the scaling used for heavy traffic models, as in [13]. There
are two related aspects to being “near capacity.” One is the difference between
the mean packet creation rate and the speed of the system, and the other con-
cerns the buffer size. Suppose that the total mean rate of arrival of packets to
the buffer is vn. In order for the system to be in the heavy traffic regime, the
speed of exiting the buffer would have to be slightly greater than vn, but not
so much faster that the buffer is virtually empty almost all of the time. If the
arrival process is the superposition of many independent users, then (loosely
speaking) the standard deviation of the “randomness” would be O(

√
n). This

suggests that if the system is near capacity at that time, then both the buffer
size and the extra capacity would be O(

√
n). If either the buffer or the extra

capacity are of a larger order, then the buffer level (scaled by 1/
√
n) would go

to zero as n → ∞, and there would be no observable packet loss. These are the
usual orders in heavy traffic analysis [13]. The amplitude scaling will be 1/

√
n.

The heavy traffic regime is one important region of operation, one where
small changes in the rates will have major consequences for buffer overflow
(i.e, lost packets) and queueing delay. One can view the system as starting
much below capacity, with a lower packet rate, and with the rates increasing
until capacity is almost reached, at which point the control mechanisms are
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activated. Our analysis is confined to the time that the system is in this heavy
traffic regime. In the comments at the end of Section 3, we will argue formally
that the heavy traffic regime is very natural, and that a well regulated system
will eventually find itself there. We will also argue formally that one should do
the control problem with delays by allowing the controls to depend on the path
over an appropriate time interval.

The controls. There are two classical types of rate control for each user. The
first (the AI in AIMD) is the usual simple slow and steady linear increase in the
allowed rate of packet creation when there are no buffer overflows. As noted
above, in the heavy traffic regime, the number of controlled users is proportional
to n on the average, and the excess capacity is O(

√
n). This suggests that the

cumulative effect of the first type of control should be a rate increase of O(
√
n)

over all controlled users, which implies a rate increase of O(1/
√
n) per user. If

it were larger, the system would experience very serious packet losses in short
order. Thus we suppose that there is a constant c such that the rate per source
increases by c/

√
n. This is the correct order in the heavy traffic regime. See

comments at the end of Section 3, where we conjecture that a well regulated
system will eventually find itself in this situation.1 It will turn out that the
cumulative effects of this control and of the buffer overflow controls are of the
same order. The second type of control (the MD part) is the usual multiplicative
decrease when there is a lost packet.

To improve the performance, we also use another type of control, called a
preemptive control , by which packets are selected at random to be “marked” as
they enter the buffer. The chance of being selected depends on the buffer state
and/or its input rate, and is a control function to be chosen. (Early discarding
or marking has become very popular since it was proposed and deployed in
the well known RED buffer management [7, 21].) The selection probability
will increase when the system nears a dangerous operating point. There are
two choices of how to handle the marked packets. Either they are deleted
so that no acknowledgment is sent, or they are not deleted, but “modified”
acknowledgments are sent back [19]. In either case, the source rate is decreased
as though the packet were lost. This control, which anticipates the possibility
of lost packets in the near future, can actually reduce the queueing delay as
well as the rate of overflow considerably, with minimal cost in lost throughput;
numerical data will illustrate this point. In either case, the use of the preemptive
control helps avoid oscillations or instability due to the effects of bursts of lost
packets caused by the delays. Here, we work with the second option, and do
not delete the selected packets.

Outline of the paper. A general model for the mice is discussed in the next
section. Two properties are paramount. One concerns the asymptotic (scaled)
total number of packets that have been transmitted by them over any time inter-
val. The other concerns the current rate of creation of packets. The assumptions
are intuitively reasonable. To emphasize this, we discuss one particular exam-

1One could change the model, using fewer sources, each with a higher rate, and allow an
accordingly faster increase in the AI control. The analysis would be similar.
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ple in detail, starting from more “physical” assumptions. It is supposed (as is
commonly done) that the mice enter with a fixed packet rate (possibly random
among the individuals), but that they are in the system for a relatively short
time, are not controlled and do not retransmit lost packets.

In Section 3, we consider the case where there are just n controlled users,
analogously to the setup in [20]. Each of them has a very large (infinite, here)
amount of data to be sent, and is subject to rate control. However, the ran-
domness of the mice process has a significant effect on the total throughput,
since it is a major cause of lost packets (buffer overflows), and the consequent
rate control. The limit model is a delayed stochastic differential equation with
boundary reflection. Note that a delayed reflection term arises. Section 4 con-
siders various extensions of the basic model of Section 2, including the case
where there is no buffer and where the rate for the controlled users changes ran-
domly, perhaps due to reinitializations; this can be useful to model a sequence
of TCP connections that are opened consecutively by the application layer, as
is the case in the HTTP/1.1 version.

Section 5 deals with the case where the controlled users appear at random,
each with a random amount of data to be sent, and vanish when their data
has been transmitted. This introduces additional randomness, which (in the
asymptotic limit) shows up via the addition of new Wiener processes in the
dynamics for the rate process. Data that show some of the advantages of the
approach and how to use it effectively are in Section 6.

2 The Model for the Mice

Recall that we use the name “mice” to describe any set of sources whose trans-
mission rates are uncontrolled and with a relatively small number of pack-
ets/source. Various cases where the number of packets goes to infinity as n → ∞
are covered by the assumptions. We suppose that the total rate at which mice
packets are being put into the buffer at time t is amn+

√
nξn(t), where am > 0

and ξn(·) is a random process such that
∫ t

0
ξn(s)ds converges weakly to a Wiener

process wm(·), with variance σ2
m. More specifically (where ⇒ denotes weak con-

vergence),

(total number of mice packets by t) − namt√
n

=
∫ t

0

ξn(s)ds = wn
m(t) ⇒ wm(t),

(2.1a)

mice rate(·) − nam
n

=
ξn(·)√

n
⇒ “zero” process,

sup
n

E sup
s≤t

∣∣∣∣
∫ s

0

ξn(τ)dτ
∣∣∣∣ < ∞, each t > 0.

(2.1b)

(2.1a) says that the total mice packet rate is the sum of a “fluid” component
and a part that is essentially independent over short and disjoint intervals. It
is motivated by the central limit theorem. Owing to the complicated way that
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packets from different users are scrambled in transmission, it might be hard
to say more, or to specify the “mice” model more explicitly. The sizes of the
individual mice can grow with n, but slower than O(n). All that we require is
that (2.1) hold. An interesting specific example of a mice process is given next.

Example of a “mice” model. Consider the following example, which was one
of the motivations for the general conditions above. The example is meant to be
illustrative, and does not exhaust the possibilities. Suppose that the mice arrive
as a Poisson process with rate λmn, with each arrival having an exponentially
distributed (and independent among arrivals) amount of packets, with mean
vm/µm. The packets are put into the system at a rate vm. The number of
active mice at any time is Nn

m(t), which satisfies

dNn
m(t) = nλmdt− µmNn

m(t)dt + dMn
m(t),

where Mn
m(·) is a martingale with quadratic variation process

∫ t

0
[nλm+Nn

m(s)µm]ds.
Let us work with the stationary processes. Then Nn

m(·)/n converges weakly to
the process with constant values λm/µm. The rate at which mice packets arrive
is Nn

m(t)vm. Write Nn
m(t) = nλm/µm +

√
nηnm(t). Then

dηnm(t) = −µmηnm(t)dt + dMn
m(t)/

√
n.

The process Mn
m(·)/√n converges weakly to a Wiener process w̃m(·) with vari-

ance 2λm. The process ηnm(·) converges weakly to ηm(·), where dηm(t) =
−µmηm(t)dt+ dw̃m(t). The “noise part” of the arrival rate process for the mice
satisfies

ξn(s) ≡ vmNn
m(·) − nvmλm/µm√

n
⇒ vmηm(·) ≡ ξ(·).

Note that (2.1b) holds.
The variance of (scaled mice packet rate at t)/

√
n is, asymptotically, v2

mλm/µm.
The (scaled packet rate) correlation function is this times e−µmt. For high speed
systems, both µm and vm are large, while the ratio vm/µm (the mean number
of packets per mouse) is “moderate.” In this case, to show that (2.1a) holds
“approximately,” write (neglecting the initial condition),

ηm(t) =
∫ t

0

e−µm(t−s)dw̃m(s),

∫ t

0

ξ(s)ds = vm

∫ t

0

∫ s

0

e−µm(s−τ)dw̃m(τ)ds

=
vm
µm

w̃m(t) − vm
µm

∫ t

0

e−µm(t−s)dw̃m(s).

The dominant part is the Wiener process. Thus, in (2.1a), am = vmλm/µm

and the variance of the Wiener process is σ2
m = 2λm[vm/µm]2. The stationary

variance of the error process (the last term on the right) is (v2
m/µ2

m)λm/µm. For
large µm and moderate σ2

m the error process is close to the “zero” process, in
that it converges weakly to it as µm → ∞.
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We could also suppose, alternatively, that the individual mice send their
packets all at once, but they are interleaved randomly with those from other
sources along the way; then we come even closer to (2.1).

3 n Controlled Users, Each With Infinite Back-
log

In this section, there are a fixed number, namely n, of controlled users, with
each having a very large (infinite here, for modeling simplicity) amount of data
to be sent. Let ri(t) denote the rate for controlled source i at time t, and
suppose that there are positive ai such that a0 ≤ ri(0) ≤ a1, so that no single
source dominates. Thus

∫ t

0
ri(s)ds is the total number of packets generated by

controlled source i by time t. Define r̄n(t) =
∑n

i=1 ri(t)/n, and v1 = r̄n(0),
v2 =

∑
i[r

n
i (0)]2/n, and ρn(t) = [

∑
i ri(t) − nv1] /

√
n. Thus

√
nρn(t) is the rate

at time t, centered about the initial mean rate nv1. The analysis commences
at the point at which the HT regime is entered.2 The service rate (channel
speed in packets per second) is assumed to be Cn = nv1 + amn + b

√
n, b > 0,

which covers the mean requirements (for both persistent connections as well as
the mice process) and gives an excess (over the mean requirements) of b

√
n.

The buffer size is B
√
n. These are the correct orders in HT analysis [13]. If

the buffer or spare capacity were of a larger order, then the number of buffer
overflows, asymptotically, would be zero.

When the buffer overflows (i.e., a packet is lost), that packet is assumed to
come at random from the various users, in proportion to their individual current
rates of packet creation: The various users (mice and controlled) would send
their packets in some order, and the order would be more or less scrambled in
the course of transmission, so that buffer overflows can be assigned at random
to the various users.

As noted in the introduction, the standard multiplicative decrease control is
activated by lost packets. I.e., there is some constant κ ∈ (0, 1) such that, if the
dropped packet at time t−α was from connection i, then the rate ri(t−) at t−
is changed to ri(t) = (1 − κ)ri(t−).

The “preemptive” control. The performance would be improved if the
sources were also signaled to reduce their rates as the buffer level or total input
rate increases, but before actual buffer overflow. The type of control, called
the preemptive control, attempts to do just this, analogously to what is done
in the RED system. It selects packets on arrival, either at random or in some
deterministic way according to the chosen control law. For notational simplicity,
we suppose that the selection is done randomly. The probability that a packet
entering the buffer at time t is selected is u(t)/

√
n, where 0 ≤ u(·) ≤ umax < ∞

is a measurable control function, and is to be selected. The selected packets
could be deleted as if there was an overflow. A preferable alternative, which
we use, does not delete the packets, but returns a modified acknowledgment,

2More on this later.
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which is used to reduce the flow at the source, similarly to what would happen
if the packet were actually lost [19]. Let Fn

t denote the minimal σ-algebra that
measures the systems data to time t. Then u(·) is {Fn

t , t < ∞}-adapted. We
suppose that there is a κ1 ∈ (0, 1) so that if a packet from source i is selected
at time t − α, then ri(t) = (1 − κ1)ri(t−). This preemptive control is to be
chosen by the system designer and, when suitably selected, it can have a major
beneficial effect on the overall operation.

Buffer input-output equations. We have

ρn(t) = ρn(0) + ct− [overflow control effects]
−[preemptive control effects], (3.1)

Let xn(t) denote 1/
√
n times the number of buffered packets at time t. Then

xn(t) = xn(0) + [(total input - total output - overflow) by t] /
√
n.

If the buffer is not empty, then its output rate is Cn. For modeling purposes,
it is convenient to use this output rate all the time, even if the buffer is empty.
Then we must correct for the “fictitious” outputs when the buffer is empty. This
is done by adding an “underflow” correction term Ln(t) (which is the number
of fictitious outputs sent when the buffer is empty) as is usual in heavy traffic
analysis [13]. Let Un(·)) denote 1/

√
n times the buffer overflow. Now, using the

definition of Cn, ρn(·), and the mice model (2.1a), we can write

xn(t) = xn(0) +
∫ t

0

[ρn(s) − b + ξn(s)] dt− Un(t) + Ln(t). (3.2)

The limit dynamical equations. The following theorem gives the HT limits,
and identifies the limit control system. Define ûn(t) =

∫ t

0
un(s)ds.

Theorem 3.1. Assume the mice model (2.1), that Cn = nv1 +amn+
√
nb, and

that supn |ρn(0)| < ∞. Then the sequence {xn(·), ρn(·), ûn(·), wn
m(·), Ln(·), Un(·)}

is tight in the Skorohod topology. For any weakly convergent subsequence, there
is a process u(·) such that the weak sense limit (x(·), ρ(·), û(·), wm(·), L(·), U(·))
satisfies

dρ(t) = cdt− v2

[ κ

v1 + am
dU(t− α) + κ1u(t− α)dt

]
, (3.3)

x(t) − x(0) =
∫ t

0

[ρ(s) − b] ds + wm(t) + L(t) − U(t), (3.4)

where û(t) =
∫ t

0
u(s)ds. Let Ft denote the minimal σ-algebra that measures

(x(s), ρ(s), wm(s), u(s − α), L(s), U(s), s ≤ t). Then wm(·) is an Ft-Wiener
process with variance σ2

m, 0 ≤ u(t) ≤ umax, and u(t) is {Ft, t < ∞}-adapted.
Comment on the limit equations. Equations (3.8) and (3.9) are suggestive
even for more general models. They capture much of the essence of the AIMD
and the preemptive control mechanisms, and retain the fundamental role of the
randomness, all for an aggregated and scaled system. Equations (3.3) and (3.4)
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identify the correct limit control system. The asymptotic effects of the overflow
and preemptive controls are in the given form. The control is admissible in
that it is a delayed nonanticipative (with respect to the Wiener process wm(·))
function satisfying the appropriate bounds.

Proof. It follows from the proof of the reflection mapping theorem in [13,
Theorems 3.4.1, 3.5.1] that there is a constant C such that, for each 0 ≤ T0 <
T < ∞,

(Ln(T )−Ln(T0))+(Un(T )−Un(T0)) ≤ C sup
T0≤t≤T

[
xn(T0) +

∫ t

T0

[ρn(s) + ξn(s)] ds
]
.

(3.5)
By the assumption on ρn(0), supn E sups≤t ρ

n(s) < ∞ for each t. By this, the
second line of (2.1b), and (3.5), we have supn EUn(t) < ∞. Thus the number of
buffer overflows on any bounded interval is O(

√
n). Thus, since the association

of overflow with source is random, we can neglect the possibility that any one
source will have more than one overflow on any finite interval.

The Lipschitz condition in (3.5) and the tightness criterion in [13, Theorem
2.5.6] or [11, Theorem 2.7b] assures that the sequence {xn(·), ρn(·), Un(·), Ln(·)}
is tight in the Skorohod topology. The sequence {ûn(·)} is obviously tight since
0 ≤ un(t) ≤ umax. The fact that some arguments are delayed is irrelevant.

We next approximate the overflow control effects in (3.1). Suppose that
there is a single overflow at time t − α. I.e.,

√
ndUn(t − α) = 1. Let Ini (t − α)

denote the indicator function of the event that the overflow is associated with
controlled source i. Then ri(t) = ri(t−)(1 − κIni (t− α)) and

1√
n

n∑
i=1

[ri(t) − ri(t−)] = −κ

n∑
i=1

ri(t−)Ini (t− α)dUn(t− α). (3.6)

The user with the lost packet is selected at random, with the probability that
controlled user i is selected being (its rate divided by the total rate, all at t−α)

fn
i (t− α) =

ri(t− α)∑
j rj(t− α) + nam +

√
nξn(t− α)

. (3.7)

Use (3.7) to center (3.6) about the conditional mean (given the rj(t−α), ξn(t−
α), and that dUn(t− α) > 0), and rewrite the right hand term of (3.6) as

−κ

n∑
i=1

ri(t−)
ri(t− α)dUn(t− α)∑

j rj(t− α) + nam +
√
nξn(t− α)

+ dMn
1 (t), (3.8)

where Mn
1 (·) is the martingale∫ t

0

κ

n∑
i=1

ri(s−) [fn
i (s− α) − Ini (s− α)] dUn(s− α).

By the random association of buffer overflow to user, we can show that

E|Mn
1 (t)|2 = O(1)E

∑
s≤t

|dUn(s)|2 = O(1/
√
n)EUn(t).
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Hence Mn(·) converges weakly to zero, and the left side of (3.8) can be used for
(3.6), as n → ∞.

It was seen that we can neglect the possibility that any one source is asso-
ciated with more than one overflow on any finite interval. Thus, in evaluating
the left side of (3.8), we can suppose that ri(t − α) = ri(t−). Using this and
(2.1b), and dividing each part of the term∑

i ri(t−)ri(t− α)∑
j ri(t− α) + nam +

√
nξn(t− α)

by n, we see that it converges weakly to the constant process, with values
v2/[v1 + am], as n → ∞. The above computations imply that, as n → ∞,
the buffer overflow control term in (3.1) is well approximatable by (κv2/[v1 +
am])Un(t− α).

Now, we turn our attention to approximating the effects of the preemptive
control. Redefine Ini (t) to be the indicator of the event that a packet selected at
time t came from controlled source i. Define Rn(t−α) =

∑
j ri(t−α) +nam +√

nξn(t − α), the total (unscaled) packet arrival rate at time t − α. Let Jn(t)
denote the number selected by t. Then

κ1√
n

∑
i

[ri(t) − ri(t−)] =
κ1√
n

∑
i

ri(t−)Ini (t− α)dJn(t− α). (3.9)

The mean rate at which packets are selected at time t− α is

u(t− α)√
n

Rn(t− α). (3.10)

We can model the random selection times as the jump times of a jump process
with conditional jump rate un(t)Rn(t)/

√
n at time t. Thus on any finite interval

there are only O(
√
n) selections, and the event that more than one comes from

the same source can be neglected. Thus, if a selection at t−α comes from source
i, we can suppose (without loss of generality) that ri(t−) = ri(t− α). The rest
of the development is similar to that for the effects of the overflow control, but
with Jn(·) replacing Un(·). Thus, by centering Ini (t−α) at its conditional mean
fn
i (t− α), we have the representation of (3.9) as

κ1√
n

∑
i

ri(t−)ri(t− α)
Rn(t)

dJn(t− α) + dMn
p (t), (3.11)

for a martingale Mn
p (·). The quadratic variation of the martingale is O(1/

√
n),

hence it converges weakly to zero as n → ∞. Now centering dJn about its
conditional mean yields the approximation to the left hand term of (3.11) as

κ1√
n

∑
i

ri(t−)ri(t− α)
Rn(t)

un(t− α)Rn(t− α)√
n

dt + dMn
q (t), (3.12)

where Mn
q (·) is a martingale whose quadratic variation is also O(1/

√
n), hence

it is asymptotically negligible.
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By what has been said,

v2κ1

∫ t

0

un(s− α)ds

approximates the effects of the preemptive control for large n. Now, with these
asymptotic representations for the effects of the controls, we see that the limit of
any weakly convergent subsequence of {xn(·), ρn(·), ûn(·), Un(·), Ln(·), wn

m(·)},
satisfies (3.3) and (3.4). The Wiener property of wm(·) is just the assumption
(2.1). The fact that it is an {Ft, t < ∞}-Wiener process is proved using standard
methods; for example see [13, Theorem 6.1.2]. The limit û(·) is absolutely
continuous with respect to Lebesgue measure, with derivative bounded by umax;
hence the asserted process u(·) exists.

Cost functions and nearly optimal controls for the physical system.
In order to assure good performance of the AIMD connections, the buffer man-
agement would implement control u(·). The quantities to penalize in the cost
are queueing delay (measured by x(·)), the loss of throughput due to the control
(measured by −ρ(·)), and buffer overflow (measured by U(·))3. Let us work with
a discounted cost criterion, where β > 0 can be as small as we wish, c0 > 0, and
the ki(·) ≥ 0 are Lipschitz continuous:

W (u) = βE

∫ ∞

0

e−βt ([k1(x(t)) − k2(ρ(t))] dt + c0dU(t)) . (3.13)

The possibility that the ki(·) are nonlinear can be useful, since (e.g.) we might
wish to heavily penalize long queues, but not be too concerned with short queues.

Using the methods of heavy traffic analysis for controlled problems [13],
it can be shown that the optimal costs for the physical problem converge to
the optimal cost for the limit problem. If the delay is zero, then the optimal
control for the limit problem is of the switching curve type: u(x, ρ) takes the
maximum value on one side of a switching curve and is zero on the other, and
the switching curve is smooth. The switching curve character for α = 0 follows
from a formal examination of the Bellman equation for the optimal value, since
the control appears linearly in the dynamics and does not appear in the cost.
The smoothness was implied by the numerical computations. See, for example,
Figure 6.1. Such switching optimal controls are nearly optimal for the physical
system for large n. We note that the cost (3.13) is well defined, since it can be
shown that E|ρ(t)| + EU(t) ≤ a1 + a2t, for some ai ≥ 0.

We shall also consider an ergodic cost criterion

γ(u) = lim
T→∞

E
1
T

[∫ T

0

(k1(x(t)) − k2(ρ(t))) dt + c0U(T )

]
(3.14)

3Penalizing buffer overflow may be important for several reasons. First, if the mice cor-
respond to real time applications, then these applications will suffer due to losses. Secondly,
the AIMD themselves may correspond to real time applications which are ”TCP friendly”,
in which case lost packets are typically not retransmitted. Losses due to overflow then again
degrade the quality of the communication.
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At present, there is little theory concerning stability or ergodicity theory for
delayed reflected diffusions such as ((3.3), (3.4)), or ((3.4), (5.5)) for the model
of Section 5. If the delay is zero then, for any feedback control u(·), stability can
be shown and the model ((3.4), (5.5)) can be shown to have a unique invariant
measure; see, e.g., [13, Chapter 4]. In the numerical computations (where zero
delay was always used), we were always able to compute an optimal control for
the ergodic cost criterion (with cost and control well approximated by those for
the discounted problem for small β), and both stability and convergence to the
stationary distribution under the optimal (or other reasonable) controls were
apparent.

Comments on the heavy traffic regime. First, we comment on the control
u(t−α) in (3.3). Suppose that there is a cost function of either the type (3.13) or
(3.14). Owing to the delay, the optimal control u(t) will not be simply a function
of (x(t), ρ(t)), but rather a function of the path segment {x(s), ρ(s), t − α ≤
s ≤ t} [9, 22]. Although there is some progress with numerical methods for
computing and approximating optimal u(·) when α > 0, good algorithms are
not yet available. Controls u(t) that depend just on the value of (x(t), ρ(t))
are subject to oscillations. Those that depend as well on the recent past can
avoid oscillations, since they “remember” recent control values and can select
the current value accordingly. It is likely that using the full potential of the
delay dynamical system can improve the operation and keep the system in the
heavy traffic regime. Following are some conjectures. They are reasonable, but
unproved at this time.

Suppose that the system starts far from the heavy traffic regime, and that
the “slow” increase in packet rate is initially c̄ for each of the n users. Then the
total increase in the rate for the persistent connections is nc̄. Capacity will be
reached quickly. One can try to pose a control problem with another preemptive
control, where losses are penalized heavily. One expects that (roughly speaking)
at a time t when the average rate reaches a level where approximately α units
of time later, it will be within O(

√
n) of capacity, this control starts to act,

and selects packets for the modified acknowledgment. The packet rate into
the buffer will keep increasing until the rate reducing effects of the feedback
reach the buffer α units of time later. After time t, since the control “knows”
the recent state values, it knows how many packets it has already selected, and
adjusts new selections accordingly. The

√
n level is used because that represents

the effects of the randomness. The control will start to act when asserted since
otherwise there will be large losses. It is reasonable to expect that such behavior
would avoid oscillations and bring the system to the heavy traffic regime, where
an additional fine control can be exerted. Similar comments apply to the case
where the delay depends on the user. We conjecture that a fuller development
and exploitation of control theory when the controls are delayed will have a
major impact.
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4 Extensions of the Model of Section 3

No Buffer. Suppose that there is no buffer, so that if the total current packet
rate exceeds the channel speed, then the excess packets are rejected. The forms
of the input processes and channel speed (service rate) are as in the last section,
but in lieu of (2.1), we assume that ξn(·) converges weakly to a process ξ(·), as
in the example in Section 2. Since there is no buffer to overflow, the “reject”
process Un(·) needs to be defined. Define

yn(t) =

[
Cn −

(∑
i

ri(t) + amn +
√
nξn(t)

)] /√
n = [b− ρn(t) − ξn(t)] ,

(4.1)
the scaled difference between the channel speed and input packet rate at t. Then
the scaled number of rejected packets is

Un(t) =
∫ t

0

[yn(s)]− ds =
∫ t

0

[ξn(s) + ρn(s) − b]+ ds (4.2)

Suppose that the correlation time of ξn(·) is short (e.g., large µm in the
special mice model) of Section 2. Then a law of large numbers argument can be
used to show that ξn(t) can be “integrated out” of (4.2), in that, as n → ∞ and
the correlation time goes to zero, the integrand can be replaced by the average
over ξn(t). This simplifies the expression for Un(·), and the limit equation for
the scaled and centered rate process ρn(·) is

ρ̇(t) = cdt− v2

[ κ

v1 + am
U̇(t− α) + κ1u(t− α)dt

]
, (4, 3)

where U̇(t) = Eρ [ξ(t) + ρ(t) − b]+, and the expectation is over the ξ(t). Then
we have a deterministic limit, which is not a priori obvious. The randomness
due to the mice in the arrival process does not appear explicitly in (4.3), but it
affects the value of the expectation that yields the overflow rate U̇(t).

Let us look a little more closely at the example in Section 2. As µm → ∞,
we would also have that vm → ∞, to keep the total mean data per mouse from
going to zero. If we suppose that λm(vm/µm) is bounded, then the stationary
variance of ξ(·) would be O(vm), which implies that the excess capacity factor
b would have to be O(

√
vm), if large loss rates are to be avoided. This is

useful scaling information. It is hardly surprising, since we no longer have the
buffer to “integrate” the mice process, and we must deal directly with the large
variations in the ξn(·) instantaneous rate process. In order to avoid huge losses,
the excess capacity must be some large constant times the standard deviation
of this process.

Finally, we note that the value of an optimal control at time t for the limit
process (which will be applied at time t+α) need only depend on ρ(s), t−α ≤
s ≤ t. Since such controls are nearly optimal for the physical process in heavy
traffic, we see that an nearly optimal control can depend only the rate ρn(·) on
[t− α, t], and not on the more rapidly changing “mice” process ξn(·).
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Analogous results holds for the model of Section 5, but there the randomness
due to the arrival and departure processes of the controlled users remains in
the limit. As for the case of concern above, only the ξn(t) process would be
“integrated out.”

Random ri(0). In the rest of this section, we suppose that there is a buffer,
as in the problem of Section 3. Suppose that the initial values of the rates are
random, identically distributed, and mutually independent, with Eri(0) = v1

and E[ri(0)]2 = v2. Then all the asymptotic results continue to hold.

Randomly changing rates. In some internet applications, where a user sends
a sequence of consecutive TCP connections, the rate of transmission is reinitial-
ized for each new TCP transfer (e.g. HTTP/1.1). We next propose a model of
which this scenario is a special case. Suppose that the users change the packet
transmission rates at random, and each with rate λ0. The new rates (which
are uniformly bounded) are chosen randomly with the same first two moments.
More precisely, there are mutually independent Poisson processes Pi(·) all with
rate λ0. When Pi(·) jumps, the rate for user i is replaced. The set of replace-
ments, over all users and time, is mutually independent, and independent of
all other “driving” processes. Let q denote the canonical rate replacement, and
define v1 = Eq, v2 = Eq2, v̄2 = E[q − v1]2 = v2 − v2

1 , and Qn(t) =
∑

i ri(t).
Then

dQn(t) =
√
ncdt− [effects of controls] − λ0 [Qn(t) − nv1] dt + dMn

r (t), (4.3)

where the martingale Mn
r (·) can be shown to have quadratic variation process

λ0

∫ t

0

∑
i

E [ri(s) − q]2 ds = λ0n

∫ t

0

[∑
i r

2
i (s)
n

− 2v1

∑
i ri(s)
n

+ v2

]
ds, (4.4)

where the expectation is over q only. Recall the definition ρn(t) = [Qn(t) −
nv1]/

√
n. It can be shown that ρn(·) is tight and that the limit of any weakly

convergent subsequence satisfies

dρ(t) = cdt− v2

[ κ

v1 + am
dU(t− α) + κ1u(t− α)dt

]
− λ0ρ(t)dt+ dwr(t), (4.5)

where the Wiener process wr(·) has variance 2λ0v̄2. The limit system equations
are (3.4) and (4.5). The control is as in Theorem 3.1.

Delay depending on the user. Up to now, all users had the same delay. The
general theory can handle user-dependent delays. Suppose that user i has delay
αi ≤ D < ∞. Let the buffer overflow at time s with a packet from user i. The
information will reach user i at time s + t1,i. Thus, at time t, user i receives
information concerning overflows at time t − t1,i, and its response reaches the
buffer t2,i units of time later, with t1,i + t2,i ≡ αi. This leads to dUn(t− α) in
the ith summand in (3.8) being replaced by dUn(t−αi). To simplify matters in
this brief presentation, first suppose that all initial rates are equal: ri(0) = v1.
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Then, for large n, the main term in (3.8) is approximately

−κ

n∑
i=1

ri(t−)
ri(t− αi)dUn(t− αi)∑

j rj(t− αi) + nam +
√
nξn(t− αi)

≈ − κv2
1

am + v1

1
n

n∑
i=1

dUn(t− αj).

More succinctly, with βn(·) being a measure with mass 1/n at αi, write

v2
1

n

n∑
i=1

dUn(t− αi) = v2
1

∫ D

0

dUn(t− α)βn(dα).

Suppose that the distribution of delays βn(·) converges weakly to a distribution
β(·). Then the dU(t − α) in (3.3) is replaced by

∫
dU(t − α)β(dα). All else

remains the same. If the ri(0) are not all equal, then redefine βn(·) to have
weight r2

i (0)/n at αi, suppose that βn(·) ⇒ β(·), and replace the right side of
the last expression by

∫ D

0
dU(t− a)β(dα). Details of the proof are omitted.

5 A Stochastic Process of Finite AIMD Connec-
tions

In the model of Section 3, the number of users is fixed at n. Now, we consider a
model where the controlled users arrive independently and randomly and leave
at random, with the arrival process independent of the mice process. New users
come from an unlimited population, with (Poisson) arrival rate λn. Each new
user comes with an exponentially distributed number of data packets, each with
mean v1/µ, and independent of the mice process and arrival times.4

With this model, as with the previous ones, the buffer overflows (i.e., packet
losses) are created by the physical process and not imposed. Note that the mean
amount of data in a new source does not depend on n. The parameter n scales

4Exponential distribution of interarrival times and session duration are more appropriate
for telephone calls than for data connections. Thus this model is expected to be more useful for
VoIP applications that use TCP friendly mechanisms to regulate their rate. The “exponential”
assumptions can be helpful even for the data connections for some preliminary dimensioning
purposes.

Non exponential distributions can be handled as well, with an increase in the dimensionality
of the limit model. For example, a k-stage Erlang model would require a k-dimensional process
to represent the rate process. The mathematical development and results are similar. This
higher dimensionality is a handicap for numerical computations, say via the Markov chain
approximation method [12], or a pathwise approximation method. But it is not a serious
handicap for simulation. Indeed, simulating the approximating limit model is substantially
simpler than simulating the physical process, when there are very many users.

Experimentation with the basic model can lead to insights that are useful for more general
cases. For example, numerical results for the basic model with no delay indicate that threshold
controls, based on the rate only, provide good approximations to the values obtained by
optimal controls. This observation provides a basis for getting good controls, which would be
very hard to compute otherwise, for more general large size systems.
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the system speed and mean number of users only.5 The source (i.e., the user)
stays “active” until all data is sent, and then disappears. Time is still measured
at the buffer and the mice model is (2.1). For simplicity, suppose that the initial
rate of each new controlled source is v1.

First suppose that there are no controls (constant transmission rate from
each source) and buffer overflows are not retransmitted. Then the packets are
sent from each active source to the buffer at a rate v1. The mean time that a
source is active is 1/µ, and the total rate at which the sources drop out at t is
µNn(t), where Nn(t) denotes the number of active sources. The (stationary)
mean number of sources in the system is nλ/µ. Hence, the analog of the channel
speed Cn of Section 3 is Cn = v1n[λ/µ]+amn+b

√
n, where, again, b

√
n denotes

the excess capacity over the mean rate n[v1λ/µ + am]. On departure of a user,
its rate v1 is lost.6 We suppose that 1/µ is large enough relative to the delay α
so that there is enough time for many round trips.

Now suppose that the input rates from the non-mice sources are actually
controlled. There are several approaches that one can take for the source de-
parture process. One approach supposes that the departure rate (of an AIMD
connection) is µ, and does not depend on the current packet transmission rate
for the source. Then the lost packet rate if connection i leaves is ri(t). This sit-
uation arises when the AIMD connections correspond to real time applications
that have a dynamic compression rate (which is then ”TCP friendly”). In these
applications, lost packets are not retransmitted (the possibility of lost packets
might be anticipated in the coding). For simplicity in the development, this is
the approach that will be taken. 7

The dynamics and limit for the rate process. The details are similar
to those in Section 3, except for the treatment of the randomness due to the
arrivals and departures for the controlled users, and we will concentrate on this
point. Write Nn(t) = nN̂ +

√
nνn(t), N̂ = λ/µ. Since the user arrival process

is Poisson and the departure rate per user is constant,

dNn(t) = λndt− µNn(t)dt + dMn
a (t) − dMn

d (t). (5.1)

Here Mn
a (·) is the martingale associated with the arrival process and has quadratic

variation process nλt, and Mn
d (·) is the martingale associated with the depar-

ture process and has quadratic variation process µ
∫ t

0
Nn(s)ds. For simplicity,

suppose that Nn(·) is stationary. It follows from this, (5.1), and the cited values
5The rate of arrivals of new users can be a smaller order of n, and then they would each

have an amount of data that would depend on n. E.g., rate of arrival O(
√
n), with data

O(
√
n). In this case the rate of work on each source is O(

√
n), so that the average sojourn in

the system is still O(1).
6Strictly speaking a source should not depart until an acknowledgment of its last transmis-

sion has been received. But our approximation to the actual departure rule has little effect,
since the order of lost packets is still O(

√
n), and µ is large.

7An alternative approach replaces the value of µ by a time varying quantity to reflect
the fact that even if the service rate per source changes the total amount of data per source
doesn’t. For example, if the allowed data rate for an AIMD connection is cut in half due to
an increase in the number of sources, then the value of the connection departure rate for that
source should be cut in half. The mathematical development of this situation is much harder.
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of the quadratic variations, that the sequence Nn(·)/n converges weakly to a
process with constant value N̂ = λ/µ, as n → ∞. Also, νn(·) satisfies

dνn(t) = −µνn(t)dt + [dMn
a (t) − dMn

d (t)]/
√
n. (5.2)

The quadratic variation of the scaled martingale term in (5.2) is λt+µ
∫ t

0
Nn(s)ds/n,

which converges weakly to 2λt. The sequence νn(·) converges weakly to ν(·),
where

dν(t) = −µν(t)dt + dw(t), (5.3)

where w(·) is a Wiener process with variance 2λ.
Returning to the rate process, write

∑
i ri(t) = Qn(t) = nR̂ +

√
nρn(t),

where R̂ = v1λ/µ. The process Qn(·) satisfies

dQn(t) = λv1ndt− µQn(t)dt + c
√
ndt

−[effects of overflow and preemptive controls] + v1dM
n
a (t) − dMn

d,1(t),
(5.4)

where Mn
d,1(·) is the martingale associated with the “rate departure” process and

it has quadratic variation process µ
∫ t

0

∑
i r

2
i (s)ds. This, divided by n, converges

weakly to the process with values v2
1λt, as n → ∞. Finally, following the

procedure used in the proof of Theorem 3.1, it is not hard to show that ρn(·) ⇒
ρ(·), where

dρ(t) = −µρ(t)dt + [λ/µ]cdt− v2
1κ[λ/µ]

v1[λ/µ] + am
dU(t− α)

+v2
1κ1[λ/µ]u(t− α)dt + v1dw.

(5.5)

Approximations to the optimal via the limit model. The limit system
equations are (3.4) and (5.5). The comments made after Theorem 3.1 concerning
the convergence of the optimal costs for the physical problem to that for the
limit also hold here.

6 Numerical Data: Optimal Preemptive Con-
trols

It is not possible at present to compute optimal policies when there is a delay
in the control (although there is promising work being done on the development
of numerical algorithms), so we set α = 0. The results still shed light on the
system behavior when the delay is small relative to the time constant in (3.3)
or (5.5).

Numerical results were obtained for the optimal control and costs for the
model of Section 5 with the cost function being either (3.13) or (3.14), with
k1(x) = c1x, k2(ρ) = c2ρ. The results for the two cost functions were nearly
the same when β ≤ .02, and the ergodic case will be described. The numerical
method was the Markov chain approximation method [12], which is the most
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Figure 1: A switching curve; no delay.

versatile current approach for controlled reflected diffusions. Only a few details
can be given here. Use c = 1, λ/µ = 4, b = 1, v1 = 1.5, am = 4, κ = κ1 = .5,
σ2
m = 4. Since there is no delay the control is a function of (ρ(t), x(t)). We

used the bound 0 ≤ u(x, ρ) ≤ 1. The buffer capacity is 12.8
√
n packets, and

c0 = 100, c1 = 1, c2 = 5, reflecting our desire to penalize lost packets most
heavily. The mice account for about 40% of the traffic and the system is quite
“noisy,” since the variances of the Wiener processes driving (x, ρ) are (9, 4.5).

The optimal preemptive controls are determined by a switching curve: u(x, ρ) =
0 below the curve and equals its maximum value above the curve. The curve
obtained for our example in the asymptotic regime is given in Figure 6.1. As
we see, in (x, ρ) space, the curve is initially (for small x) almost a straight
line with a slightly decreasing slope as x increases. As the buffer fills up, the
slope becomes sharply more negative, as expected. The optimal cost for the
problem with preemptive control was about 1/10th of that without. In general,
The values of the cost components (stationary mean values of x(t), ρ(t), and
limt→∞ EU(t)/t) are more significant than the optimal cost, since they give us
information on the tradeoffs. Optimal control is not of interest for its own sake,
but rather for the information provided on good design, and tradeoffs among
the cost components as the weights change.

For the uncontrolled problem, the sum of the buffer overflow rate for all users
was 5.35

√
n, vs. 0.28

√
n under the optimal control for the given cost coefficients.

The mean queue was virtually full for the uncontrolled case, compared to an
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average of one-third full under optimal control. The total input rate for the
controlled users was reduced by an average of 0.36

√
n under optimal preemptive

control, compared with an increase of 6.3
√
n with no control. Thus to get an

improvement in overflow of about 20 times cost a fractional reduction in the
throughput of (6.3 + 0.36)/[(v1λ/µ) + am]

√
n) = 0.666/

√
n.

If the buffer size is increased, its average percentage occupancy is about the
same (queue size is not weighted heavily), the average Eρ increases, and the
average overflow rate does not change dramatically (e.g., doubling the buffer
only halves the overflow, under our parameters). The optimal system adapts
to an increased buffer size mainly by increasing the average flow, keeping the
queue size roughly in proportion to the buffer size, an interesting fact in itself.
Of course, a larger weight on x will reduce the average queue size.

These numbers illustrate the type of tradeoffs that are possible. One pays
for reduced overflow by reduced packet rate. But the packet rate is reduced only
where it does the most good. The tradeoffs vary with the cost coefficients. To
use the method effectively, one makes a series of runs, varying the coefficients
ci This yields a set of possible tradeoffs between the competing criteria. In
each case, the tradeoff is under an optimal control. The approach to the use of
numerical methods and heavy traffic approximations is similar to what was done
for the problem of input control of a multiplexer system in [14]. A comparison
with threshold controls shows that the effects of the optimal control can be well
approximated by a threshold control depending on ρ only, for appropriate values
of the threshold. The cost components for the no control, optimal, and threshold
cases are summarized in Table 1. If the threshold controls are activated only
when the buffer exceeds some modest level, their performance is even better.
Keep in mind that the described optimal control and costs are for a very heavy
weight on overflow.

Table 1. Cost components.
under run type buf overflow/

√
n Ex Eρ

no cont. 5.35 11.92 6.35
opt. cont. .28 4.4 -.36

thresh ρ = 0 .69 7.6 1.46
thresh ρ = −1 .48 6.4 .98
thresh ρ = −3 .33 4.9 .2

7 Appendix: Comparison With a Fluid Model

Reference [20] also concerned a limit approximation for large systems and justi-
fied the use of a delayed deterministic differential equation as an approximation
for a certain class of problems. Since there are major differences between that
work and this, apart from the different scaling, and since that paper is the main
other current work on the use of limit-delay equations for AIMD models, a brief
discussion of some of the differences is worthwhile.
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In the basic model of Section 3, capacity (i.e., bandwidth) scales linearly with
n, and so does the number of sources. The packet rate for each source is O(1).
Our general approach also allows the possibility that the number of sources
grows more slowly with n, with the packet rate per source growing accordingly
faster. While there are no explicit capacity constraints in [20], it is clear that
the bandwidth (BW) is proportional to their n2, and we use this fact below.
They use a fixed number of connections of the order of

√
BW (and no analog

of the models of Sections 4 and 5), each sending packets at rate O(
√

BW). The
number of mice connections grows linearly with

√
BW, and so does the rate of

each mouse. Time is divided into “decision intervals” of length O(1/
√

BW), and
the rates are (perhaps unrealistically) averaged over these successive intervals
before feedback and decisions. This averaging over O(

√
BW) packets before

feedback effectively eliminates the randomness due to the mice. We work closer
to system capacity where the effects of random variations are greater, and it
is the true instantaneous randomness that causes the losses and activates the
controls.

The total overall rates of increase of the packet rate due to the slow additive
control is the same here and in [20]. In [20] the “slow constant rate of increase
of the packet rate” of each connection in the nth model (the one corresponding
to n TCP connections) increases by 1/n per each time slot, so that in terms
of real time the total rate of increase does not depend on n. Thus the total
rate of increase is of the order of

√
BW, as in our case. In our model, the

packet loss of each AIMD source is random and determined by the loss process
associated with that source. This is in conformance with the objectives of buffer
management schemes [7]. In [20], in contrast, all AIMD sources have the same
instantaneous dynamics, hence identical losses. An important advantage of the
work in [20] is that the model, being deterministic, is much simpler. Hence,
under its assumptions, one can more conveniently explore some of the effects of
delays.
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